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ABSTRACT 

We apply the P. Hall enumeration principle to count the number of subgroups 
of a given index in the free pro-p group and the free abelian group. We shall 
present an infinite family of non-isomorphic pro-p groups with the same zeta 
function. 

1. Introduction 

Let G be a finitely generated group; let a, = a.(G) be the number of 
subgroups of G of index n. In recent years there has been some interest in the 
function G---{a.(G)}~=~ (see [H], [GSS], [S], [J] and the references therein). 
In this paper we show how the P. Hall enumeration principle can be applied to 

the study of this function for various groups. 
M. Hall ([H]) gave a recursive formula for a.(Fr), where Fr is the free group 

on r generators. The same formula holds also for the free pro-finite group F~, by 
the one-to-one correspondence between its finite index (open) subgroups and 

those of F .  ~ 
In this note we give a recursive formula for a,,(Fr(P)), where Fr(p) denotes 

the free pro-p group on r generators. A 
We should mention that the subgroups of index p" in Fr(P) are not in 

one-to-one correspondence with those of index p" in Ft. Rather they corre- 

spond to the subnormal subgroups of F, of that index, so our formula counts 

also these subgroups of Ft. 
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One way to encode the numbers an (G) is by introducing the Dirichlet series: 

fa(s)= ~ an(G)n-'-- Y. a,n-" (see [GSS]). 
n ~ l  nffil 

For G -- Z,f~(s) is the classical Riemann zeta function, and so in generalfc(s) 
is called the zeta function of G. The zeta function o f Z  r was computed by [BR] 
and [GSS]. We will show how P. Hall's principle can be applied to give a 
different proof after factoringfz,(S) into its Euler product decomposition. 

Another application of P. Hall's enumeration principle to our topic is a 
sufficient condition for two pro-p groups to have the same zeta function. We 
shall use this condition to present an infinite family of non-isomorphic pro-p 
groups with the same zeta function. This condition will also be used to give 
another proof  of the following result (proved in [L]): 

If  a pro-p group G is f (pn)- indexed with f(pn)~,pn(r--1)+ 1 (i.e. 
(G: K) = pn implies rk(K) = p"(r - 1) + 1), then G = F,(p) .  

2. The P. Hall enumeration principle 

Let C;  be an elementary abelian group of order pr. Denote 

-ap,(Cp) O<t<-_-r. 

One can easily see (considering C~ as a vector space) that 

(1) 
= (p ' - -  1 ) (p ' - ' -~ - l ; - - '~p- -  i) 

From (1) we can obtain 

(2) 
r 

and by induction on r 

( 3 )  rI ( X  - -  p t )  = ( _ 1 ) t f f ( t - l ) / 2  x r - t  
t =0 t - 0  

Using these identities P. Hall [H2] stated an enumeration principle for finite 
p groups, and we shall state here a slight variant. 
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THEOREM 1 (P. Hall) [H2]. Let G be a group, and ~ <3 G such that 
G / ~  ~-- C~. For 0 < t < r, 1 < i < [[], denote by K,.~ the subgroups such that 

< K,,~ <-_ G, (G" Kt,~) = p'. 

(Obviously K0,l = G, Kr,1 = ~.) 
Let A be a finite collection of  subgroups of  G such that each H EA is contained 

in at least one of  the K~,~'s, 1 <= i <-_ [[]. 
For Kt,~ denote 

nfKt,;) = # { H E A  IH <=K,.,}. 

Then 

(4) (--1)tpt(t-1)/2 ~ n(gt,i)=O. 
t ~ O  i z l  

A 
3. Reeursion formula for F,(p) 

A 
Let F,(p)  denote the free pro-p group (p a prime number) on r generators 

and denote 

(*) A ( n , r ) - - I  0, ~ n < 0 ,  
[a:(F~(p)), n > O. 

PROPOSITION 2. For n ~ I 

(5) A ( n , r ) =  ~ ( - - 1 ) ' + l r r ] p ' ~ ' - W 2 A ( n - t , p ' ( r - - 1 ) +  1). 
t - I  L -] t 

PROOF. Let • be the Frattini subgroup of Fr(p). Then F, (p) /~ -~  C~ and 
each proper subgroup of , ~ p )  is contained in one of the Kl,;'s and thus we can 
apply the P. Hall enumeration principle. Each Kt,~ is a free pro-p group on 
pt(r - 1) + 1 generators (cf~,ILV]) and thus contains A(n - t, pt(r - 1) + 1) 
subgroups of index p" in F,(p). The number of Kt,:s for a fixed t is [[], and the 
rest is a simple consequence of the P. Hall enumeration principle. 

A recursion formula which involves only the number of subgroups of lower 
index in the same group, F,~p), can be obtained by the following: 

LEMMA 3. Suppose the numbers A (n, r) are given recursively by 

A(n,  r) = 

0, n <0 ,  

1, n = 0, 

b[A(n - t, ft(r)), n = 1, 2 , . . . ,  
t - - I  
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where f :  N - , N  is any funct ion (N  denotes the natural numbers)  f t ( r )  = 

f ( f l - t ( r ) )  ( f° ( r )  = r), and  bf are given numbers.  Then 

A (n, r) = ~ bt~-'V)A (n - t, r). 
t - - I  

PROOF. Let B i b i -- (k, / ) ,  i = 0, 1 , . . .  be the infinite matr ix  defined by 

h i  _ h f l ( r )  
u i ,  j - -  t / j  , 

bj+l,j = 1, 

b~,j = 0, otherwise. 

Define A" i -- (akj ) inductively by 

A l = B  °, A i+l = A T e .  

By induction on n it is easy to see that, for i >_- 0, 

An [ l r l 
A(i - l,if~+'(r))J-[A(n + i  i l,f(r))J 

thus 

A .  ~ A  n 

A(O, f~(r)) 
A ( - 1, f" + l(r)) 

. 

A ( n ,  r) 

A ( n  - 1, f(r)) 
= | A ( n  - 2,f2(r))  

Hence 

Now 

thus 

al~,l = A (n, r). 

[~J~-I(r) n - I  n - I  
n ; ~ " J  al,i +aij+l, n>l, 

a~,j Lb:, n = I, 
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= b P-'(') " -  ~ + a~,~- I a~,l 1 a~.~ 

=bP-~(r) n - I  , ~ f n - ~ r ) - n - 2  n - 2  
al,~ -1- 02 u~,l + a~,3 

n - - I  
= y~ l~ ' l " - t ( r )an- - t  ..1- a 1 

u t  ~1 ,1  " I,n • 
t = l  

By substituting A(n, r) = a" A(0, r) = 1 we complete the proof. 1,1 ,  

COROLLARY 4. I f  A(n, r) are defined by (.), then for n > 1 

[ p " - t ( r -  1) + 1] 
(6) A(n, r) = ~ ( - 1)t+lp m-l)/2 A(n - t,r). 

l ~ l  t 

PROOF. Since [7] = 0 for t > r, and A (n, r) = 0 for n < 0, (5) can be written 

as 

A ( n ' r ) =  ~ ( -1) t+lpt ' t -° /2[~]  

and the result follows immediately from Lemma 3 by substituting 

b~=(--1)t+lpt(t-l)/2[ tit ' f ( r ) = p ( r - 1 ) + l .  

Lemma 3 can easily be generalized for arbitrary initial con- REMARK. 

d i t i o n s .  

A 
This result can be generalized to Fr(X),  the free pro-nilpotent group on r 

generators by the following. 

LEMMA 5. I f  G is a finitely generated group whose finite homomorphic 
images are nilpotent, and if  n = pf,. • • p?? is the factorization of  n into distinct 
primes, then 

a, = ap~,ap~2. . .a~tk (a, = a,(G)). 

(In terms of zeta functions the lemma can be stated as: The zeta function of  G 
enjoys an Euler product.) 

PROOF. Let K = N {H =< G ] ( G : H )  _-< n }. K is a characteristic subgroup 
of finite index, and thus G/K is a finite nilpotent group, so G/K is the direct 
product of its p-Sylow subgroups. The same applies to every subgroup of G/K, 
thus the lemma is true for G/K. Applying the homomorphism theorems gives 
the result for G. 
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A A 
Now recall that Fr(.A/') = ] " [p r im  e p Fr(p) ,  and hence we get a recursive formula 

for F,(~¢). 
Finally we shall show that A (n, r) has exponential growth as a function of 

the index p"; more precisely: 

PROPOSITION 6. l im,_~ (A(n, r))"-" = p ( r - l ) / ( p - t ) .  

PROOF. Denote by H the intersection of all maximal subgrou~. .ofFr(p)  
which contain N, where N is an open subgroup of  index p". Then Fr(P)/H is an 

elementary abelian group whose order does not exceed p". Hence N is 
A 

contained in [[ ] maximal subgroups of F , (p)  for some t _-< n. We can therefore 

deduce 

A(1, r)A(n - 1, p ( r -  1)+ 1) 
<=A(n, r)=< A(1, r)A(n - 1, p(r - 1)+ 1), 

(p" - 1)/(p - 1) 

and by induction (substituting A (1, r) = ( pr _ 1 )/( p - 1)) 

n f l l  p p ' ( r - O  n - I  p f ( r - l ) + l  __ 1 
p~r-l)~p.- l)/~p- 1)-,2 = <=A(n, r) <--_ 

t=0 P" t ffi0 p - -  1 

plq 

( p - l ) .  
p e r -  IXu ' -  l ) / (p-  1) 

and thus l im._~(A(n, r))"-" = p(r-l)/(p-1). 

REMARK. Proposition 6 implies that every finitely generated pro-p group, 
G, has at most exponential subgroup growth, thus the series Z~'=o a,,(G)z" 
defines an analytic function. It is interesting to study the relations between the 

algebraic structure of  G and the analytic properties of  this function. 

Since f -  wtp-1) < 2 r- 1 for all p, the growth of  a~(F,(X)) is also exponential 

(more accurately, the growth of b,, = Xp,_ 1 ak(~b~'))  is exponential). For F, 

(the discrete free group on r generators) a,,(Fr) is asymptotic to 

n(n!) "-l,'~ ne °'l°g'-'×r-l) [Ne] 

so the growth in that case is more than exponential. 
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4. The zeta function of Z r 

Applying the Hall enumeration principle to Z' gives: 

PROPOSITION 7. For n > 1 

ap , (Z ' )=ap ,= t_~ ( -1 ) t+ ' p " ' -w2[~ ]  ap .... 

(For n < t we define ap . . . .  0.) 

PROOF. Let ~ be given by 

¢~=('~ {H ~ Z r I(Z':H)= p}. 

It is easy to see that the collection of subgroups of index p" in Z r satisfies the 
conditions of the Hall enumeration principle. Each of the Kt,i's is isomorphic 
to Z' and the result follows. 

Let fz,(S) be the zeta function of Z ' 

(i.e.fz,(S)= ~ a~(Z')n - s =  ~ a~n-S) .  
/1~1 n - - I  

Then fz,(S) enjoys an Euler product, i.e. 

fz,(S)= II f~,(s)= 1-I ( ~  a , "P-~) .  
prime p prime p n = 0 

PROPOSITION 8. 

COROLLARY 9. 
zeta function. 

P s pt-S) f~: ( ) = FI[.7o ~ (1 -- - '. 

fz,(S) = Fl[Y.~ {(s -- t), where ¢(s) is the classical R iemann 

PROOF OF PROPOSITION 8. For a c o n s t a n t  Ct 

n - 0  n - t  n - 0  

(Recall ap . . . .  0 for n < t.) 
--iS 0 The coefficient ofp -'~ in X[_o Ctp ~f~(s) is Z[-o Ctap .... Set 

Ct = ( - 1)tpt(t- l)/2 [ : ] , 

and by Proposition 7 we get 
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Now from (3) (with the substitution x = pS) we obtain 

or f~,(s) = l-l;2J(1 - p,-S) -~. 
The corollary follows since (1 - pt-s)-~ is the Euler factor of ((s - t). 
As was noted in the introduction this result was proved by [BR] and [GSS] 

using different methods. 

5. Non-isomorphic groups with the same zeta function 

We shall say that a group G is f(n)-indexed if  rk(K) = f(n)  for each (open) 
K < G s.t. (G : K) = n (rk(K) denotes the minimal number  of  generators of K). 
Obviously, if G is f(n)- indexed and (G: K) = k, then K isf(nk)-indexed. 

PROPOSmON 10. I f  the pro-p groups G~, G 2 are f(p")-indexed, then 
(~,(s) = (~2(s). (In other words: f (p" )  determines (~(s) uniquely.) 

PROOF. Assume ap,(G0 = ap,(G2) for i = 0, 1 , . . . ,  n -  1 for every two 
pro-p groups G~, G2 that are indexed by the same function. Then 

ap,(G,)-- Y~ ( - 1 ) ' + ' p  '('-')/2 Y, ap.-,(K~,i) 
t = l  i - I  

J[I) [ftp] 
--- ~ (--1)t+~P m-I)/2 E ap'-'(K2,)=ap,(G2). 

t - - l  i--1 

(K~,i denotes a subgroup of index pt in Gj (j = l, 2) containing the Frattini 
subgroup.) 

E X A M P L E S .  

(1) f~(p") = p " ( r , ~ )  + 1 
In this case G -~Fr(p). 

A A 
PROOF. Let ~0: F,(p)--- G be an epimorphism. Since ap.(Fr(p)) = ao.(G) 

for all n, ker ~0 < K for every open subgroup K of F ~ ) ,  and thus ker ~o = ( 1 }. 
(This result was first proved in [L] using different methods.) 

(2) f ( p " )  = r 
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In this case (~(s )=  FIT-d(1 - p t - S ) -  1. We shall consider in detail the case 

f (p" )  = 2. 
Consider the sequence of  groups M~,p 3 M2,p 3 M3,p ~ • • • defined by 

Mk, p = {(~ A) a~I+pkZp,A~Zpt 

(Zp denotes the p-adic integers). 

It is easy to see that Mk,p, Mt, p are non-isomorphic groups for k ~ l since 

Mk.p,l,,t~*'k,p ----'~ Zp ~Zp/pkZp, but they are all 2-indexed (cf. [LM]). (These 

groups are split extensions of Zp by Zp.) Thus we get an infinite family ofpro-p 

groups with the zeta function (1/(1 - pS))(1/(1 - pS-1)). 

By taking the direct product l'Ipnme p Mk.p and permuting the Mk'S we can get 
2 ~o non-isomorphic pro-nilpotent groups with the zeta function ( ( s ) ( ( s  - 1). 
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